Better classification → better coaching → fewer failures → more resources for systemic prevention → reduced volume → improved SL without headcount. The system gets better the longer it runs.
The diagnostic brain needs the data spine's cross-platform visibility. The predictive layer needs historical baselines. No vendor spans all three boundaries.
Traditional: Monday review → Tuesday analysis → Wednesday coaching → Friday hope. This architecture: same-day response by eliminating sequential dependencies.
from mcp.server import Server from mcp.types import Tool, TextContent server = Server("ops-intelligence") @server.tool() async def get_daily_performance(date: str) -> list[TextContent]: """Fetch and correlate daily metrics across all platforms.""" ccaas, wfm, tickets = await asyncio.gather( genesys.get_interactions(date), ukg.get_timecards(date), helpdesk.get_tickets(date) ) perf = build_unified_model(ccaas, wfm, tickets) anomalies = detect_anomalies(perf, baseline=get_rolling_30d(date)) return [TextContent(text=perf.to_report(anomalies))]
def classify_qa_failure(criterion_id, failing_agents, eval_window, ctx): # GATE 1: System health events = ctx.get_system_events(eval_window) has_outage = any(e.type in ["OUTAGE", "LATENCY_SPIKE"] for e in events) n = len(failing_agents) rate = n / ctx.agents_evaluated_on(criterion_id, eval_window) if n >= 3 and has_outage: return Classification(type="SYSTEMIC", coaching_blocked=True) # GATE 2: Pattern width if n >= 3 and rate > 0.25: return Classification(type="SYSTEMIC", coaching_blocked=True) # GATE 5: Cohort pattern cohort = detect_cohort(failing_agents, ctx.roster) if cohort.significant: return Classification(type="COHORT") # All gates passed → individual return Classification(type="INDIVIDUAL", coaching_blocked=False)